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Abstract

Until recently monocular depth estimation has been
dominated by supervised models but newer approaches
have shown that self-supervised monocular depth estima-
tion can achieve similar and in some cases even better re-
sults while at the same time using only cheap monocular
or stereo imagery. Obstacle detection and segmentation
on the other hand is currently done almost exclusively by
supervised models using manually generated ground truth
data because unsupervised approaches do not yet provide
the needed quality. Using previous best practices and a set
of new methods with our proposed model we significantly
improve the state of the art in self-supervised monocular
depth estimation and show that these results can be used
to teach the same model to learn obstacle segmentation. We
show the effectiveness of a U-Net variation and a number of
modified loss functions, introduce a system that leverages
inclination and roughness of the predicted depth to learn
obstacle segmentation from monocular images and demon-
strate the quality of our results on the KITTI benchmark as
well as through visually compelling obstacle maps gener-
ated by our model.

1. Introduction

Monocular depth estimation is a nontrivial problem in
computer vision due to the fact that any image can map
to an infinite number of possible depth configurations.
While originally it was tackled using mostly geometric
approaches, since the advent of convolutional neural net-
works significant progress has been achieved in this area.
Until recently this task was treated mostly as a supervised
problem and networks were trained on large datasets of
images and their corresponding laser-scans. Godard et al.
[1] introduced self-supervised monocular depth estimation
from stereo images by enforcing consistency between
the left and right image. This approach has a number of

Figure 1. Original Image and Product of Estimated Disparity- and
Obstacle-map.

advantages including the vast availability of stereo footage
and the much lower cost of producing it, as well as its
high quality and low sensor-noise and error-rate compared
to LIDAR scans. Today multiple ways to estimate depth
using self-supervised approaches from stereo [ 1] or motion
parallax [2] have been described and have been shown
to outperform traditional geometric and sometimes even
supervised models [!]. In fact we will show in this work
that self-supervised monocular depth estimation has gotten
so good that the resulting estimations can be used to derive
more complex measures. We propose to use an efficient
but powerful model as well as some improvements in loss
computation and training to significantly improve the state
of the art in monocular depth estimation.

In addition to depth-estimation we use a novel algorithm
that uses angle and roughness of the predicted depth to train
the our model to perform self-supervised obstacle detec-
tion with interesting results. In the past obstacle detec-
tion has mostly been treated as a general object detection
problem from camera images, LIDAR measurements or a
combination of both. While there has been limited suc-



cess for unsupervised approaches most of them were su-
pervised and therefore required a large number of human-
generated labels that the network could learn. This is very
resource-intensive and depending on the quality of the la-
bels can be very error prone. Object detection is usually
not done through segmentation but through architectures
that estimate the position and size of a bounding box for
an object. This is done due to the fact that segmentation is
relatively inefficient for a large number of object classes.
Other approaches have managed to achieve good results
through street segmentation or lane detection purely from
images which reduces the number of classes but might miss
some kinds of obstacles without using depth information.
Mancini et al. [3] tried to combine the depth estimation and
obstacle detection tasks and were able to show that this can
be beneficial to both tasks, however their architecture was
resource intensive and used bounding boxes which are of
limited utility in real world scenarios. The exact implemen-
tation details of our approach will be made public'.

2. Previous Work

As the notion of depth is a prerequisite for many tasks in
computer vision and robotics there has been extensive re-
search in the area of depth measurement and estimation.
While currently the best direct results are achieved with
modern laser scanners, their cost, weight and size is pro-
hibitive for many areas where depth information could be
of great use. In contrast cameras are passive sensors that
are much smaller, cheaper and can be built to produce high
quality images under most circumstances. With the rising
success of learning based methods Eigen et al. [4] have
shown the feasibility of depth estimation as a supervised
learning problem while others were able to refine this ap-
proach [5] to even surpass traditional methods in some cases
[6]. To reduce the need for ground truth depth data, that is
often hard to acquire under significantly varying real world
conditions, weakly supervised approaches have tried to ex-
ploit additional information in the form of sparse supervi-
sion, unpaired depth supervision [7], known object sizes [&]
or other supervised appearance matching terms [9], how-
ever the need for high quality depth data or other annota-
tions still limits these approaches. Similarly synthetic data,
while being a valuable alternative, is not trivial to generate
in the required amounts and quality, especially including
varying weather and lighting conditions.

2.1. Self-supervised Stereo Training

As an alternative to supervised training, self-supervised
learning of depth as an intermediate step during the image
reconstruction between two images has emerged [10]. Fol-
lowing works used left-right consistency between two syn-

!Code repository to be announced.

Image Plane

True Depth

Estimated Depth

Figure 2. Concept of self-supervised depth estimation. A mises-
timation in the depth of the left image can lead to discrepancies
between the true and the projected right images.
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chronized stereo pairs [ 1] or similar techniques for monoc-
ular videos [ 1 1]. While using stereo images at training time
provides generally good results, they might not always be
available. In contrast monocular videos are ubiquitous but
many models using them encounter the problem of not han-
dling movement well. While some approaches like egomo-
tion estimation and individual tracking of moving objects
exist [2], to solve these problems they introduce consid-
erable complexity and computational overhead at training
time and during online learning and refinement.

2.2. Joint depth estimation and obstacle detection

Path-finding and obstacle detection are closely con-
nected and are in many cases the main reason to use any
kind of depth perception. As both play an important role
in self-driving technology and robotics in general, a large
amount of work has been devoted to these topics, however
most authors approach them as problems for supervised
learning and segment obstacles separately from images [ 12]
or LIDAR [13]. Another line of work has achieved note-
worthy results by using unsupervised features like rough-
ness and angle of the detected surface normal from LIDAR-
scans [14, 15]. These are the concepts that come closest to
our framework even though during inference we segment
obstacles directly from monocular images using a convolu-
tional neural network and do not use LIDAR measurements.

3. Methods

The main objective of our setup is the self-supervised
learning of depth estimation and the segmentation of pos-
sible obstacles. The sole source of supervision for both
tasks during training are pairs of rectified stereo images with
known intrinsic and extrinsic parameters. In the following
we will describe in detail the problem setup, the architec-
tural details of our model as well as the objective functions



and compare them to architectures proposed by other au-
thors.

3.1. Problem Setup

The input during training are two stereo RGB images
(I1,I3) € RTXWx3 a5 well as the extrinsic camera pa-
rameters (C1,Cs) € R**? for them. The model 6 is a
fully convolutional neural network that takes a single im-
age I; as input and predicts a depth D; € RE*W and a
map of obstacles O; € R*W  Similar to Zhou et al. [16]
and Casser et al. [2] through the depth estimated by 6 and
a fully differentiable warping operation ¢ we can project
the images I; and I» between the camera viewpoints de-
fined by C; and C5 such that fi_>j denotes the j-th image
constructed by warping the i-th image into the j-th posi-
tion. The training signal can either be computed through
photometric losses between the projected image fi_”- and
the original image I; (Figure 2) such as the reconstruction
1088 Lyec = |fiﬁj — I,|, or through losses like our obstacle
detection loss that are derived from the estimated depth.

3.2. Model Architecture
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Figure 3. General Model Architecture. U-Net like structure with
convolutional blocks in the skip-connections, depth-outputs on
multiple scales and a final branch for obstacle detection.

The basic model architecture we use can be seen in Fig-
ure 3 and is based on a U-Net architecture [ | 7] that consists
of encoder-decoder structures with skip-connections, and
applies best practices introduced in previous works [2, 18].
As an encoder ResNet18 is used [19] and as a decoder we
use an improved variation of the one used by Godard et al.
[18]. We use skip connections augmented with additional
blocks consisting of two convolutional layers that are then
reconcatenated with their input-tensor and output the esti-
mated depth at four scales through a single convolutional

layer with sigmoid activation. Then we apply a rescaling
operation of the following form: D = 1/(a * o 4+ b), where
o is the output from the sigmoid activation and a and b
are chosen as 10 and 0.01 to constrain the output range of
D. In all other layers we use RELU nonlinearities, and re-
flective padding instead of zero padding to reduce border
artifacts. The obstacle segmentation branch consists of a
padding layer and two convolutional layers and branches
out before the last convolutional layer of the depth estima-
tion network. In total the model has little over 18M pa-
rameters which allows for relatively efficient training and
execution.

3.3. Objective Functions

For the depth estimation branch we use a relative recon-
struction loss and a structural similarity loss. The relative
reconstruction loss is computed as the sum of the absolute
difference of the left and right images warped onto each
other using the estimated depth, which is then divided by
the target image plus one to amplify errors in very dark re-
gions of the image:
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Figure 4. Image and its atan?2 transformation.

In addition we use an SSIM loss proposed by Wang et al.
[20], however instead of computing the structural similarity
between the warped and the original image we compute the
SSIM loss on the atan?2 transformation of both images (Fig-
ure 4). This ensures high contrast even in under- or over-
exposed images and amplifies small details that are mak-
ing it easier for the SSIM loss to punish even small differ-
ences. To further improve the importance of close objects
we weight the SSIM error by multiplying it with the SSIM
between the unmodified left and right images plus one.

For both losses the error is only computed on areas that
are not occluded during the warping operation. As a third
loss function for the depth estimation task we choose to



use the extended scale invariant log RMSE introduced by
Mancini et al. [3]

Ldepth = %de - T;(Zdz>2+

. 2)
=3 (VaDi+ V,D;) - N
7

where d; =log D; —log D;, D; and Dj are the left and
right predicted depth warped onto each other. V. D; and
VyD; are the horizontal and vertical predicted depth gradi-
ents of D; and Nj is the 3D surface normal of the projected

depth D;.

Figure 5. (from top to bottom) 1) Original Image, 2) Estimated
Depth, 3) Computed Obstacle Map, 4) Product of Estimated Dis-
parity and Estimated Obstacle Map.

While the first two terms correspond to the scale invari-
ant log RMSE loss introduced by Eigen et al. [4], the third
term was originally introduced to enforce the orthogonality
between predicted gradients and a given ground truth nor-
mal, aiming to preserve geometric coherence by Mancini
et al. [3]. We use this loss to verify the coherence between
the left and right predicted depths.

A final loss function that is applied during training is an
edge aware surface smoothness loss that punishes changes
in the surface inclination that don’t correspond to edges in
the color gradients of the original image. This is done by

taking the mean of the L2-norm between the surface nor-
mals of pixel p;, and its 8 neighbours S(py) and dividing it
by the two-dimensional image gradient of the input image.

In order to train the obstacle segmentation branch we
generate a self-supervised obstacle map for every pixel py,
where ob(p) = 0 indicates drivable area and ob(py,) = 1
indicates an obstacle. The values are derived from the
roughness of the estimated depth D(py) and the angle of
the surface normal N(py). If we denote the 8 connected
neighboring pixels of py as S(pg), a pixel is marked as ob-
stacle if one of the following conditions is true:

max (|D(pi) = S(pe)l) > 01 (D(px))® (3

PES(PK)
|D(pr) — D(px)| > b (D(px))? )
- (INY(pr)]
arcsin (HN(pk)H) < 05 ®))

where 07 and 6y are hyperparameters set to 0.006 and
0.003, whereas 63 is the maximum deviation angle from
the vertical axis that we set to 82°. D(py) is the mean
of the depth of S(py) points. N¥(py) is the projection of
the norm N(py) on the y-axis. The intermediate obstacle
maps are then combined via logical inclusive-or and we re-
move all non-obstacle patches that are smaller than 5% of
the total image area (Figure 5). Finally the obstacle-loss
is computed using the cross-entropy between the resulting
map and the output of the obstacle-branch of the network
where the weights for drivable and obstacle are 1.0 and 1.4.
To keep obstacles consistent between left and right image
and to remove small artifacts we also apply the SSIM loss
on both estimated obstacles and their warped counterparts.
The final loss is computed as a weighted sum off all the
losses, applied to both stereo images:

Liotal = @ Lyec + B Lggim + Y Ldepth+

(6)
o Lsmooth +€ Lobst

where a, 3, v, 0 and € are hyperparameters that we decided
to setto 1.0, 0.2, 0.002, 0.04 and 0.01. While at first it might
seem more efficient to simply compute the ground truth ob-
stacle map at inference time using the formulae listed above,
we found that adding two additional layers as an obstacle
branch to our network is not only faster but also leads to
generally better results for obstacle detection with less noise
and better left-right consistency, with an additional benefit
of lower errors in the depth estimation.

3.4. Training

We train our model on the images from the KITTI Raw
dataset and exclude all static scenes as well as the test-split
used by Eigen et al. [4]. While we resize the images to a res-
olution of 416 x 128 pixels, we test the results on the ground



truth depth recreated at the original image resolution. We do
this by interpolating the estimated depths bilinearly. Prior
to training the encoder is pretrained on Imagenet and dur-
ing training we augment images through horizontal flipping
and by randomly varying the color space within the ima-
genet distribution. We use a batch-size of 4 and RAdam
[21] as an optimizer with 1 = 0.9, 52 = 0.999 and add
Lookahead [22] with £ = 5. As an initial learning rate we
use 0.0002 and halve it after every 200,000 batches without
improvement. Even though the architecture of the model
is relatively straightforward we have to apply a few tricks
to allow it to train in a stable way. Our network contains
few batch normalization layers in the decoder, which we
assume helps with absolute scaling of the estimated depth
outputs. This however makes it quite difficult to get the
training started without exploding gradients. To mitigate
this problem we start the training with five additional batch-
normalization layers, located at the front of the decoder and
between the decoder blocks. Once the model has started
training successfully and the metrics have gone below a spe-
cific threshold we start removing the added normalization
layers progressively starting from the end of the decoder
stack. While without this system the model can start rarely
if ever, with it starting the training is almost always success-
ful. We train our Tensorflow implementation of the model
for up to 50 epochs on a single RTX2080Ti which takes
around 50 hours and select the checkpoint with the lowest
training loss for testing.

4. Experimental Evaluation

In the following section we present results from our
models trained on the KITTI Raw dataset created by Geiger
et al. [23] and evaluated on the test-split proposed by Eigen
et al. [4]. While we use a popular benchmark and common
metrics in order to make the depth estimation results com-
parable, we are not aware of a benchmark to compare the
results of our obstacle detection branch. Therefore we apply
a naive approach and compare its results to the 200 images
of the training set for semantic segmentation of the KITTI
benchmark. The applied training-set contains around 42K
rectified stereo images from 61 different scenes and the test
split consists of 697 stereo image pairs. The ground truths
are produced by a Velodyne laser scanner with a range of up
to 80 meters and are reprojected onto the left image at the
original image resolution, that slightly varies around 1392
x 512 pixels. In general ground truth data is used for eval-
uation only and we resize the estimations to the original
resolution through bilinear interpolation. When displaying
our obstacle segmentation results we combine them with the
disparity, which being the inverse of the depth, helps to bet-
ter display nearby details, while depth shows details equally
over the whole distance, which would be less suitable for
obstacle detection. As shown in Table 1 we are able to sig-

nificantly improve the state of the art for self-supervised
depth estimation and as shown in Figure 6, models using
the obstacle-segmentation branch are mostly able to pro-
duce convincing and reasonably detailed obstacle maps un-
der varying circumstances. We test different variants of our
model for Joint Unsupervised Depth and Obstacle Estima-
tion (JUDQO) and show a detailed ablation study for a num-
ber of loss variants in Table 2. While all models deliver
comparably good results, we show that the addition of the
various loss functions, as well as convolutional blocks in the
skip connections and the addition of the obstacle-detection
branch lead to a slight refinement of the model.

To create a baseline for the obstacle segmentation branch
we compare its results to the semantic segmentation bench-
mark included in the KITTI dataset. While our definition of
“obstacle’ might be negotiable, for the sake of simplicity we
assume all classes that are part of the *flat’ category not to
be obstacles. This includes the labels road, sidewalk, park-
ing and rail-track. Evaluation is done on the 200 images of
the training set and the model is able to achieve an mean
IOU-score of 20.0191. This evaluation is certainly not ideal
since for example the dataset does not consider curbs while
the model does. Furthermore the model often has problems
with sharp color-changes and tends to classify them as ob-
stacles even though they lie on a flat surface. Nevertheless
these results are promising and can be built upon.

Finally even with convolutional blocks in the skip connec-
tions and active obstacle detection branch the model still
runs at over 70 frames per second during single-image in-
ference on a single RTX2080Ti.

5. Conclusion

We have presented a model for the self-supervised learn-

ing of depth-map prediction as well as obstacle segmenta-
tion from monocular images using only aligned stereo im-
ages during training. Applying current best practices as well
as some novel loss variations and techniques we are able
to significantly improve the current state of the art in self-
supervised depth estimation and show that self-supervised
obstacle segmentation can achieve promising results. This
should be encouraging for future research in these areas
since supervised approaches in both areas require consider-
able technical and financial resources and might under some
conditions not be feasible at all.
In the future we would like to refine the self-supervised
obstacle detection approach, in addition to approaches for
better temporal consistency of our results as well as simul-
taneous localization and mapping with included obstacle
detection. Also the application of our system for semi-
supervised learning of obstacle segmentation could be a
promising topic for future exploration.



Table 1. Evaluation and comparison of monocular depth estimation results on the KITTI dataset and test-set used by Eigen et al. [4]. As
supervision they use ground-truth (D), motion (M), or stereo (S). All results use a maximum range of 80 meters. For pink columns lower
is better while for yellow columns higher values are better.

Method | Sup [ AbsRel [ SqRel | RMSE | RMSE log | 4, | &2 | d3 \
Eigen et al. 2014 [4] D [0214 [1.605 [6563 [ 0292 0.673 [ 0.884 [0.957
Eigen et al. 2014 [4] D | 0203 | 1.548 | 6307 | 0.282 0.702 | 0.890 | 0.958
Zhou et al. 2017 [16] M | 0208 | 1.768 | 6.856 | 0.283 0.678 | 0.885 | 0.957
Yang et al. 2017 [11] S | 0182 | 1481 | 6501 | 0.267 0.725 | 0.906 | 0.963
Godardetal. 2017[1] | S | 0.141 | 1.369 | 5.849 | 0.242 0.818 | 0.929 | 0.966
Godard etal. 2018 [18] | S | 0.133 | 1.158 | 5370 | 0.208 0.841 | 0.949 | 0.978
Yang et al. 2018 [24] S | 0137 | 1326 |6232 | 0224 0.806 | 0.927 | 0.973
Yang et al. 2018 [24] M | 0.131 | 1254 | 6.117 | 0.220 0.826 | 0.931 | 0.973
Casseretal 2018[2] | M [ 0.109 | 0.825 | 4750 | 0.187 0.874 | 0.958 | 0.983
JUDOyyy (ours) S ]0.0892 [0.7217 | 4.2156 | 0.1729 0.9172 | 0.9641 | 0.9309

Table 2. Ablation study of monocular depth estimation results on the KITTI dataset and test-set used by Eigen et al. [4]. Tested modificatin
in subscript. For pink columns lower is better while for yellow columns higher values are better.

Method Abs Rel | SqRel | RMSE | RMSE log | &, | 0 | d3 \
JUDO reconstr. loss 0.0959 | 0.8716 | 4.4808 | 0.1781 0.9085 | 0.9621 | 0.9806
JUDOxeconstr. Toss not relative 0.0933 | 0.7592 | 4.3149 | 0.1762 0.9074 | 0.9626 | 0.9810
JUDOy ssim 1oss 0.0982 | 0.7695 | 4.4951 | 0.1821 0.8956 | 0.9595 | 0.9805
JUDO6 normals loss 0.1016 | 0.9311 | 4.7859 | 0.1893 0.8967 | 0.9574 | 0.9782
JUDOx smooth loss 0.0946 | 0.7413 | 4.3008 | 0.1769 0.9072 | 0.9623 | 0.9811
JUDOgmooth 1oss not edge-aware | 0.0930 | 0.7522 | 4.2843 | 0.1768 0.9082 | 0.9622 | 0.9805
JUDOq obstacle detection 0.0931 | 0.7487 | 4.3083 | 0.1755 0.9076 | 0.9629 | 0.9813
JUDOy cony. skip blocks 0.0924 | 0.7464 | 4.2837 | 0.1750 0.9092 | 0.9628 | 0.9811
JUDOxeep batch-norm. layers 0.1139 | 1.2679 | 4.7633 | 0.1959 0.8878 | 0.9524 | 0.9756
JUDOx image-ssim weighting 0.0962 | 0.7812 | 4.3598 | 0.1784 0.9045 | 0.9617 | 0.9809
JUDO 0.0892 | 0.7217 | 4.2156 | 0.1729 0.9172 | 0.9641 | 0.9809

Figure 6. (top to bottom) 1) Original Image, 2) Estimated Depth, 3) Obstacle Disparity Product
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