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Abstract

Until recently monocular depth estimation has been dominated

by supervised models but newer approaches have shown that self-

supervised monocular depth estimation can achieve similar and in

some cases even better results while at the same time using only cheap

monocular or stereo imagery. Obstacle detection and segmentation

on the other hand is currently done almost exclusively by supervised

models using manually generated ground truth data because unsu-

pervised approaches do not yet provide the needed quality. Using

previous best practices and a set of new methods with our proposed

model we significantly improve the state of the art in self-supervised

monocular depth estimation and show that these results can be used

to teach the same model to learn obstacle segmentation. We show

the effectiveness of a modified structural similarity loss, introduce

a system that leverages inclination and roughness of the predicted

depth to learn obstacle segmentation from monocular images and

demonstrate the quality of our results on the KITTI benchmark as

well as through visually compelling obstacle maps generated by our

model.
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1 Introduction

1.1 A short History of Artificial Neural Networks

Figure 1: Time line of Neural Network Development Image source: Vázquez (2018)

Humans have long sought to reproduce their own intelligence. Starting in greek mythology with

Thalos who was a mythical automaton with artificial intelligence but most prominently in the 19th

and 20th century (e.g. Ada Lovelace, 1842) when inventors began to envision computers and thinking

machines. In the early days of computers they were soon programmed to perform tasks that are hard

for humans but easy for them, like multiplying two numbers.

Figure 2: McCulloch-Pitts Neuron. Image source:
Kawaguchi (2019)

Soon however it became clear that in contrast

many things that feel natural and intuitive to

humans like recognizing faces, were very dif-

ficult for them. To achieve more human-like

behaviour scientist investigated the way the hu-

man brain works in order to build or simulate

comparable machines (Figure 1). In 1943 War-

ren McCulloch and Walter Pitts tried to simulate

intelligent behaviour through simple connected

circuits which led Donald Hebb to his theory of

connections getting strengthened through learn-

ing and continued use. Later McCulloch and Pitts tried to explain complex processes in the brain

through a model of a neuron that takes a number of inputs, computes a weighted sum of them and

outputs zero if the result is below a threshold and one otherwise (Figure 2). This was the basis for the

‘perceptron’ introduced by Frank Rosenblatt in 1957, that introduced an additive bias to the neurons

and arranged them in interconnected layers. They were used in the Mark I Perceptron machine that

was designed for image recognition (Jiaconda, 2019).
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Figure 3: While some functions like AND and OR
are linearly separable, for example XOR is not.
Image source: Poole and Mackworth (2017)

The problem of these neurons however was that

they were only able to learn linearly separable

problems and e.g. failed at learning the simple

but essential XOR-function (Figure 3). Further-

more the algorithms used at the time were un-

able to learn networks with more than a single

layer that have no connection to the outside of

the network (i.e. hidden layer) and were pro-

hibitively slow to simulate on the hardware used

at the time.

Regardless these linear neurons were used for their first real world applications in systems designed

to reduce noise in phone lines. At the idea of artificial neurons a huge hype began to rise and the

true capabilities of these simple neurons were often tremendously over-interpreted or overstated and

problems of the systems were ignored and overlooked. Finally the hype ended with a book named

"Perceptrons" by Marvin Minsky and Seymour Papert in 1969 that clearly showed that the previous

approaches could not be translated to multi-layered networks and that a large or infinite number

of iterations would be needed to make perceptrons learn effectively. The publication of this and

other problems erroneously led to the conclusion in the scientific community that all neural networks

were unable to learn complex functions and were therefore not worth investigating any further. As a

consequence almost all research and funding in the area of neural networks dried up which led to an

era that today is commonly referred to as the ’AI Winter’.

Only in 1982 with the publication of a new kind of network that later came to be known as

’Hopfield Net’ published by John Hopfield neural nets started to recover from their crisis (Stra-

chnyi, 2019). They are energy based models that assign a lower scalar energy to observed vari-

able configurations than to unobserved ones. They have the capability to learn through a simple

Figure 4: Backpropagation and Gradient
Descent allow to find the minimum of a
loss function. Image source: Champandard
(2004)

yet powerful algorithm and are guaranteed to settle to

a minimum. While they were of course not ideal they

gave rise to some new interest in the concept of neu-

ral networks and allowed the field to slowly recover.

Geoffrey E. Hinton and Terrence J. Sejnowski refined

this new kind of network and co-invented the Boltz-

mann machine and its practical implementation, the

Restricted Boltzmann machine that allowed for effi-

cient training of multi-layered networks.

Another major discovery was the Backpropagation al-

gorithm whose utility for neural networks was already

suggested in the 60’s by Paul Werbos but was only re-

discovered and applied practically in 1985 by Hinton,

Rumelhart, and Williams. Together with their imple-
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mentation they published a text that specifically addressed the problems and drawbacks laid out

by Minsky and Papert in 1969 in the paper that caused the ’AI Winter’ and were thus able to con-

vince many critics that still did not believe in the usefulness of neural networks (Jiaconda, 2019).

Backpropagation together with Gradient Descent are still the main workhorses of modern neural

networks (Figure 4). They allow to compute the gradient of the cost-function with respect to all

weights and biases in a networks, and to subsequently move them towards their optimum. While this

is no guarantee to find the global optimum of the cost function, with the right tuning it can deliver

impressive results in practice. Since the early 90’s neural networks again capture the imagination of

many and while now they finally deliver on some of their original promises the expectations again

are growing much faster than the actual technology ever could.

1.2 Introduction to Modern Neural Networks

Figure 5: (top) The modern artificial neuron (bias omit-
ted). (bottom) Simple fully connected network architec-
ture. Image source: Vieira et al. (2017)

Originally artificial neural networks were

meant to approximate the functioning of

the human brain since that is the most intel-

ligent system known today. However while

still being inspired by neuroscience, to-

day’s research is becoming more and more

independent of it. The neuron used in mod-

ern neural networks is still composed of the

kind of neurons developed by Frank Rosen-

blatt in 1958 (Figure 5). It takes a weighted

sum of all of it’s inputs, and adds a bias to it.

During the learning process both weights

and biases are adjusted to move the result-

ing value towards an output that minimizes

the target-function (i.e. loss-function). In

its purest form a neural network is arranged

in layers where the first is called the input-

layer, the last is called the output-layer and

all layers in between are hidden layers that

don’t directly interact with input or output values. This structure allows the data to be gradually

transformed into an internal representation such that each layer gets a more elaborate set of features

than the one before it.

While historical neural networks were not able to generate outputs that were not linearly separable,

in modern networks this is done through a nonlinear activation-function (Figure 6). It receives the

output of the neuron as input, manipulates it and passes it on to the next layer or the output. While

many modern activation functions exist and have their different advantages and drawbacks, all of

them have the same basic goal of letting the network approximate nonlinear functions.

3



Figure 6: The most common activation functions. Image
source: Sze et al. (2017)

Another addition to the historical network

structure has been essential to make neural

nets more stable and more easily trainable.

Since all weights and biases are manipu-

lated in parallel this can lead to exploding

or vanishing gradients that lead to network

outputs over- or under-flowing or them to

get so close to zero that they are not able

to react to losses anymore since their gra-

dient is zero. The most common proposed

solution to this problem is called ’batch-

normalization’ and consists of an opera-

tion that normalizes all neuron outputs by

a mean and scaling factor. This allows the

network to reduce the co-variance shift, reduces over-fitting through the noise introduced through the

normalization and finally allows to use higher learning rates by avoiding very high or very low activa-

tion outputs (Doukkali, 2018). For the same reasons it is important to normalize all network inputs.

Usually they are scaled to a range between zero and one or from minus one to one (Matthew Stewart,

2019).

Figure 7: Example of a non-convex error surface
with two parameters. In neural networks we have
to efficiently minimize error-surfaces composed of
millions of parameters but the algorithms stay the
same. Image source: Bengio (2019)

While Backpropagation lets us find the gradients

for all of our variables relatively easily the ques-

tion of how to best use these gradients remains

an unsolved problem. The algorithms that are

used to manipulate the weights and biases are

generally called optimizers and over the recent

years a great number of them have been pro-

posed. In general it is their job to move along

the axes of an n-dimensional surface in order

to find the global minimum or an acceptable lo-

cal minimum (Figure 8). The main problems

that optimizers have to deal with are local min-

ima, saddle points, poor conditioning of the tar-

get function as well as the choice of the ideal

learning-rate which is essentially the step size

for the movement along the axes.

In an infinite high-dimensional search-space local minima can be almost impossible to distinguish

from a global minimum (Figure 7). What can make it easier is taking a number of measurements in the

neighbourhood of our point of interest and using the mean gradient to move further. In today’s neural

networks this is achieved through the so called batch-size that denominates the number of random

samples that is taken in a particular point. While the batch size in case of a smooth error function

4



could be seen as computation overhead, a big enough sample size can achieve steady progress even

under very rough conditions since this avoids converging to sharp local minima (Keskar et al., 2016).

Figure 8: Minima of an error surface. Image source: Huang
(2018)

Recent studies have shown that in

high dimensional space saddle points

are much more common than lo-

cal minima (Matthew Stewart, 2019).

They can create areas of gradients

very close to zero that prevent the net-

work from making further learning

progress. The fact that error surfaces

have a great number of saddle points

and very flat areas is a result of them

being non-convex and usually condi-

tioned poorly. This can be shown by

looking at the Hessian, the second order partial derivatives of a function, that describes the local

curvature of a function (Matthew Stewart, 2019). If the Hessian is poorly conditioned a small change

in the input will have a large effect on the output which is unfortunate because it leads to a slow and

unstable optimization in despite the presence of strong gradients because of the resulting oscilations

(Matthew Stewart, 2019).

Figure 9: Momentum can reduce oscillations in a poorly
conditioned system (left) and lead to a faster convergence
(right). Image source: Genin (2018)

In many optimizers these problems

are tackled through so called mo-

mentum which is inspired by linear

momentum from physics (Figure 9).

When applying the current gradients

an exponentially decaying fraction of

the past gradients is added. This al-

lows the optimizer to move past ill-conditioned or flat regions faster because of the ’velocity’ it retains

from previous steps. This also causes opposing gradients to cancel each other out such that we come

closer to the fastest path of descent. Mathematically momentum can be described as follows:

vn = η ∗ vn−1 − α∇L (1)

In the first part of the equation η is the so called friction coefficient that exponentially decreases the

influence of past gradients (vn−1) which is commonly defined as 0.9. The second part of the equation

consists of the loss-function gradient multiplied by the learning rate α.

This learning rate is another important parameter for a successful model. It defines the step size to

take in the direction of the computed gradient during the training process. While a large learning

rate can accelerate training it also increases oscillations and might cause the model to step over the

minima that are worth investigating. A learning rate that is to small however slows the training down

unnecessarily and might let the model get suck in local minima (Figure 10). Therefor it is beneficial
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to tune the learning rate in order to allow fast progress in the beginning of the training and accurate

optimization once the model is close to the global minimum. Today the most popular way to achieve

this is the ADAM optimizer that automates the tuning of the learning rate by estimating an optimal

learning rate for each parameter at the same time applying an exponentially decaying average of the

past gradients similar to momentum (Matthew Stewart, 2019).

Figure 10: While a good learning rate can deliver results quickly, the wrong one can make training
almost impossible. Image source: Jordan (2018)

An important task that has to be tackled before the training of neural networks even starts and that has

been extensively optimized over the recent years consists of the parameter initialization at the start

of training. This can have a huge effect on the stability and outcome of training and greatly speed

up gradient descent. A number of heuristics for successful model initialization exist (see Xavier- or

He Normal Initialization), but in general they consist of choosing small random weights with zero

mean and a standard deviation that depending on the specific initialization can vary with model depth.

Biases are often initialized to zero or in case of the ReLU activation being used with a small positive

value (e.g. 0.1) in order to avoid saturation of the activation function.

Once the training is ready to start a way to judge the output of the network has to be found. While in

supervised training we usually have the desired ground-truth and can find a measure of perceived

difference from this desired value. In unsupervised training however no ground truth can be used,

so other measures that can be derived from the input, auxiliary data or geometrical considerations

Figure 11: A convolutional
layer shifts a kernel of neu-
rons over an image and pro-
cesses it patch-wise. Image
source: Theano Development
Team (2016)

must be used to judge the quality of the network. While it is often

considered to be good practice to keep the loss positive in theory it

is allowed to assume any real value.

1.3 Modern Layer- and Network Architectures

Of the seemingly infinite amount of layer and network architectures

of course only a few have been used in our application. The partic-

ularly important ones will be explained here. Until now only fully

connected networks have been mentioned however for images with

a sensible size connecting every pixel to every neuron in a hidden

layer would require a huge amount of memory and compute power.

Therefor the convolutional neural network has been introduced that
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instead of connecting all pixels to all neurons shifts the same kernel of neurons over the image for

every pixel and arranges the results (Figure 11). Arranging a number of these convolutional layers

allows the network to efficiently decompose an image into a more concise internal representation

while reducing the number of features. This internal representation that then be used to classify the

image through a fully connected layer or to recreate a new image from it through deconvolution.

The resulting network stack first contracts and then re-expands its number of feature vectors and

is commonly referred to as an encoder-decoder architecture (Figure 12). This architecture helps to

extract the important information while redundancies or unnecessary details are reduced.

Figure 12: Encoder-decoder networks can be used to extract semantic information from images.
Image source: Badrinarayanan et al. (2015)

As networks get deeper in order to extract more complex information from the input information it

gets increasingly difficult for the top layers to learn because their gradients get diluted through the

whole network stack. This can create the paradoxical situation that deeper networks while theoreti-

cally having more learning capacity, actually achieve worse results than their shallow counterparts.

Figure 13: Example of a residual connection. Image source:
He et al. (2015)

To tackle this effect residual connec-

tions have been introduced (Figure

13). This can create the paradoxical

situation that deeper networks while

theoretically having more learning ca-

pacity, actually achieve worse results

than their shallow counterparts. To

tackle this effect residual connections

have been introduced. They consist of

connections that skip whole blocks of

layers and get then recombined with

the network stack through an addition

operation. Through this they create so

called gradient-highways that allow

networks with thousands of layers to still make reasonable progress. While this kind of depth is

usually neither efficient nor necessary these residual connections have also helped more shallow

networks to make faster and more reliable progress.
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Figure 14: The original U-Net Architecture. Image
source: Ronneberger et al. (2015b)

This concept of connections that skip whole

blocks of layers to create a shortcut for gradients

has inspired the research community to drive

this idea to it’s extreme in encoder-decoder net-

works. Previously they often had the problem

of not being able to recreate the original level

of detail in their output image since much of

the fine-grained information gets lost during the

process of down-sampling. To counter this the

so called U-Net architecture has been designed

(Figure 14). It has skip-connections that bridge

large parts of the network stack from the encoder

to the decoder and allow the network to receive

fine grained information about the original image. Numerous variants of this architecture have

been published since its original implementation and while today it is mainly used for semantic

segmentation as will be shown later it is also highly capable of producing excellent results in depth

estimation.

1.4 Current and Future Applications for Neural Networks

There is an endless number of tasks that neural networks are used for today, however they can be

divided into three general topics. Classification, regression and data processing. It is important to note

however that the boundaries between these areas are fluid since all of them rely on neural networks

as general function approximators.

Classification is the task of assigning data to one or more predetermined classes. It is useful across

many domains including pattern recognition, sequence classification or sequential decision making

Figure 15: Often data can not be classi-
fied perfectly without overfitting. Image
source: Overfitting (2019)

(Neural network, 2019). As can be seen in Figure 15 most

data can not be perfectly fit with the limited information

available. So instead of directly predicting a class usually

a probability for each class is estimated through a softmax-

activation in the final layer. The probabilities are then

learned through the categorical cross entropy loss function.

If a sufficient amount of data is available and overfitting

is avoided (Figure 15) a good model can learn a function

that is close to the original distribution that the training

data was sampled from. This practice however shows

that in this field classification is just a special case of

regression of a probability distribution. Some applications

of classification include object recognition, handwritten

character recognition, tumor segmentation from X-ray or

8



MRI images or recognition of recorded audio signals or speech. While most of these tasks are

currently done in a supervised fashion the current trend strongly points towards unsupervised or self-

supervised training methods and models. As an example in this paper we will explore self-supervised

obstacle segmentation with stereo images as the only source of supervision whereby we classify each

pixel of an image as either drivable surface or part of an obstacle.

Regression analysis statistically is the process of estimating the relationship between variables

(Regression analysis, 2019). This is a natural application for neural networks and can be used for

anything from house price estimation to weather forecasting or stock price prediction (Figure 16).

Figure 16: Complex function approximated by a
neural network. Image source: fast.ai (2018)

An application with particular importance is

probability prediction throughout a variety of

topics. In particular natural language process-

ing and understanding which relies on the es-

timation of conditional probabilities between

words has made huge progress since the intro-

duction of neural networks. For future appli-

cations doubtlessly graph neural networks will

play a major role. They are currently being heav-

ily researched and are concerned with the esti-

mation of good value heuristics for traversing

graphs. In particular for huge complex graphs

where the generation of effective heuristics be-

comes increasingly difficult and standard graph searching algorithms perform poorly these nets could

lead to big performance gains.

Figure 17: t-SNE allows to reduce the dimensionality of
data or to display high-dimensional data in two dimensions.
Image source: Violante (2018)

Another research area that is evolving

very quickly right now are models for

data processing. As mentioned pre-

viously with the right training neural

networks can separate important infor-

mation from redundant or noisy data.

This property makes them interesting

for many tasks including data filtering,

dimensionality reduction, clustering,

signal separation and data compres-

sion. An example for this is multi-

speaker speech recognition that allows

for voice commands in crowded or

noisy rooms or visualization of high-

dimensional data using the popular t-

Distributed Stochastic Neighbor Em-

bedding (i.e. t-SNE) method (Figure 17).
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Figure 18: RF-Pose is able to do human pose esti-
mation through walls from perturbations in WiFi-
signals. Image source: Zhao et al. (2018)

One impressive project that points to future uses

of neural networks is for example through-wall

human pose estimation by interpreting the per-

turbations to the WiFi signals by Zhao et al.

(2018) (Figure 18). This work shows how learn-

ing systems can make information and data ac-

cessible that is hard for humans to interpret in its

natural form and points to future uses in sensor-

fusion, computer vision or medical imaging. For

example applying similar technologies to mi-

croscopy, X-ray, or MRI technologies might

lead to cheaper implementations or better image quality. A further exciting step in the evolu-

tion of neural networks for reinforcement learning is a model called AlphaStar that was built by

Google and was able to defeat some of the best pro-players at Starcraft II. It was able to achieve

its superhuman skill-level through a mix of supervised learning and self-play and demonstrates that

neural network can learn to solve difficult problems in complex environments. A final example

for research that points to future possibilities and applications is another model by Google called

BERT (Devlin et al., 2018). It demonstrates how unsupervised learning and transfer learning can

create a big shift in natural language processing and data processing in general. It leveraged large

amounts of unlabeled data to achieve a major improvement in a number of natural language tasks

while always relying on the same pretrained model. All of these examples show that neural networks

are indispensable for the future of not only computer science but also many other areas of research

and human life.

1.5 Limitations of Neural Networks

Neural networks have long been known to be universal function approximators. This fact however has

sparked great misunderstandings in the past and present that some people in the general population or

even the media fall for, and that are sometimes used to sell false promises or flawed products. Neural

networks are not magic and can not perform impossible tasks. While this seems like common sense

to most people many false claims are either based on the lack of detailed knowledge of the technology

fundamentals or are based on a misunderstanding of the ’Universal Approximation Theorem’. This

theorem was first proven in 1989 for sigmoid activation functions by George Cybenko and states

that a neural network with a single hidden layer and a finite number of neurons can approximate any

function in Rn to an arbitrary degree (Universal approximation theorem, 2019). While this theorem

by itself makes neural networks seem incredibly powerful, it does not make any claims about the

learnability of this function. So while in theory a single layer neural network with a finite number of

neurons can approximate any real-valued continuous function to an arbitrary degree it is not clear

how we can generate said network. So while today’s neural networks can be very powerful without a

doubt, through the limitations of our current learning algorithms they are still far from the potential

power this theorem seems to promise.
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Two further limitations of neural networks that are frequently cited are the lack of interpretability

and their need for a strong signal. Neural nets are often described as black box models, meaning that

while their predictions might be good, the process of how those predictions are made is opaque and

can therefor not be easily explained or understood. This attribute is fine for some areas where it is

not necessary to have an explanation for the results of an algorithm, but some other areas where e.g.

safety and security is of central importance prefer to avoid black box approaches. Thus describing

neural networks as a black box is often done to disparage them for those areas. What has to be noted

however is that especially simpler for neural networks there are methods to partially open the black

box. The most common ones are decomposition, which approximates the weights in a neural network

using a set of IF statements, and distilling the neural network into a soft decision tree. While these

methods still have drawbacks and are difficult to use for complex nets they represent a first step in the

young field of neural network interpretability research.

Figure 19: A model that is too complex tends
to overfit more than a simple model. Image
source: Overfitting (2019)

Regarding the need of neural networks for a strong

signal Ockham’s razor can be a very helpful heuristic.

For this context essentially it states that if two mod-

els perform a regression task equally well, the one

with fewer assumptions i.e. parameters should be pre-

ferred. This becomes not only relevant during model

selection where complex models like neural networks

should not be used for simple regression task that

can easily approximated through other means (Figure

19) but also during the training of neural networks.

While longer training often leads to better results on

the training set, it is common practice to continually

test the models performance on a test-set that it is not trained on. This allows to train the model while

it keeps generalizing better to the data and to stop in time to avoid severe overfitting. This trade off

is also known as the bias/variance dilemma. Bias is the inability to model the underlying features

between features. Variance is the excessive modeling of random noise in the data. During training

of a complex model the bias decreases while the variance constantly increases. Finding the right

balance between the two is one of the main challenges during the training of neural networks.

Figure 20: Apparently neural networks can be
fooled by carefully tuned random noise. Image
source: Goodfellow et al. (2014)

Another apparent drawback of neural networks

is their susceptibility to adversarial examples.

They consist of carefully tuned noise that, if

added to an image, can have a huge effect on

the predictive performance of a neural net. The

most famous example can be seen in Figure 20

that shows the image of a panda that through the

addition of seemingly meaningless noise, that

is almost imperceptible to the human eye, gets

misclassified as a gibbon with high probability. This however highlights a fact that, while seeming
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obvious, is often forgotten by many. Neural do not learn what we would like them to learn but

what we train them to. This might be best explained through an example from the early days of

neural network that was popularized through a number of sources but who’s exact origin seems

unclear (gwern, 2019). Apparently in the 60’s the US military wanted to use early neural networks to

distinguish pictures with tanks on them from pictures without tanks on them. They created a data-set

and trained a model that seemed to work surprisingly well only to find out later that all of the pictures

with tanks on them had been taken on a sunny day while all of the pictures without tanks on them had

been taken on a cloudy day. So effectively all the network did was to measure the total brightness of

the images, something the human eye is relatively insensitive for.

Figure 21: Not only can robust training be done but
even non-robust features can be used to achieve
good accuracy on the original data set. Image
source: Ilyas et al. (2019)

Similarly for adversarial examples a recent study

confirmed what had been long suspected: In-

stead of bugs they are highly predictive but non-

robust features in standard ML data sets that

humans are insensitive to (Ilyas et al., 2019).

This means that the problem of these examples

in reality does not necessarily lie in the model

that gets trained but in the data it gets trained

on. Ilyas et al. (2019) also show ways to harden

neural networks against those attacks and show

that these non-robust features are so predictive

that even a model trained entirely on them can

perform well on standard classification (Figure

21). This shows that we should not be surprised that classifiers exploit highly predictive features that

happen to be non-robust under a human-selected notion of similarity, given such features exist in

real-world data sets (Ilyas et al., 2019).

1.6 Introduction to Depth Estimation

Figure 22: Original Image and Product of Estimated Disparity- and Obstacle-map.

Monocular depth estimation is a nontrivial problem in computer vision due to the fact that any image

can map to an infinite number of possible depth configurations. While originally it was tackled

using mostly geometric approaches, since the advent of convolutional neural networks significant

progress has been achieved in this area. Until recently this task was treated mostly as a supervised

problem and networks were trained on large datasets of images and their corresponding laser-scans.

Godard et al. (2017) and Garg et al. (2016) introduced self-supervised monocular depth estimation
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from stereo images by enforcing consistency between the left and right image. This approach has

a number of advantages including the vast availability of stereo footage and the much lower cost

of producing it, as well as its high quality and low sensor-noise and error-rate compared to LIDAR

scans. Today multiple ways to estimate depth using self-supervised approaches from stereo (Godard

et al., 2017) or motion parallax (Zhou et al., 2017) have been described and have been shown to

outperform traditional geometric and sometimes even supervised models (Godard et al., 2017). In

fact we will show in this work (Figure 22) that self-supervised monocular depth estimation has gotten

so good that the resulting estimations can be used to derive more complex measures. We propose to

use an efficient but powerful model as well as some improvements in loss computation and training

to significantly improve the state of the art in monocular depth estimation.

1.7 Introduction to Obstacle Detection

Figure 23: Obstacle detection treated as supervised
object detection problem. Image source: Majek
(2017)

In addition to depth-estimation we use a novel

algorithm that uses angle and roughness of the

predicted depth to train the our model to per-

form self-supervised obstacle detection with in-

teresting results. In the past obstacle detec-

tion has mostly been treated as a general ob-

ject detection problem from camera images, LI-

DAR measurements or a combination of both.

While there has been limited success for unsu-

pervised approaches most of them were super-

vised and therefor required a large number of

human-generated labels that the network could

learn (Figure 23). This is very resource-intensive and depending on the quality of the labels can be

very error prone. Object detection is usually not done through segmentation but through architectures

that estimate the position and size of a bounding box for an object. This is done due to the fact that

segmentation is relatively inefficient for a large number of object classes. Other approaches have

managed to achieve good results through street segmentation or lane detection purely from images

which reduces the number of classes but might miss some kinds of obstacles without using depth

information. Mancini et al. (2018) tried to combine the depth estimation and obstacle detection

tasks and were able to show that this can be beneficial to both tasks, however their architecture was

resource intensive and used bounding boxes which are of limited utility in real world scenarios.
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2 Previous Work

As the notion of depth is a prerequisite for many tasks in computer vision and robotics there has been

extensive research in the area of depth measurement and estimation. While currently the best direct

results are achieved with modern laser scanners, their cost, weight and size is prohibitive for many

areas where depth information could be of great use. In contrast cameras are passive sensors that are

much smaller, cheaper and can be built to produce high quality images under most circumstances.

With the rising success of learning based methods Eigen et al. (2014) have shown the feasibility of

depth estimation as a supervised learning problem while others were able to refine this approach

(Laina et al., 2016) to even surpass traditional methods in some cases (Yang et al., 2018a). To reduce

the need for ground truth depth data, that is often hard to acquire under significantly varying real

world conditions, weakly supervised approaches have tried to exploit additional information in the

form of sparse supervision, unpaired depth supervision (Kundu et al., 2018), known object sizes (Wu

et al., 2018) or other supervised appearance matching terms (Zbontar and LeCun, 2016), however the

need for high quality depth data or other annotations still limits these approaches. Similarly synthetic

data, while being a valuable alternative, is not trivial to generate in the required amounts and quality,

especially including varying weather and lighting conditions.

2.1 Self-supervised Stereo Training

Figure 24: A misestimation in the depth of the left
image can lead to discrepancies between the true
and the projected right images.

As an alternative to supervised training, self-

supervised learning of depth as an intermediate

step during the image reconstruction between

two images has emerged (Garg et al., 2016).

Following works used left-right consistency be-

tween two synchronized stereo pairs (Godard

et al., 2017) (Figure 24) or similar techniques

for monocular videos (Yang et al., 2017). While

using stereo images at training time provides

generally good results, they might not always be

available. In contrast monocular videos are ubiq-

uitous but many models using them encounter

the problem of not handling movement well. While some approaches like ego-motion estimation

and individual tracking of moving objects exist (Casser et al., 2018), to solve these problems they

introduce considerable complexity and computational overhead at training time and during online

learning and refinement.
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2.2 Joint Depth Estimation and Obstacle Detection

Path-finding and obstacle detection are closely connected and are in many cases the main reason

to use any kind of depth perception. As both play an important role in self-driving technology

and robotics in general, a large amount of work has been devoted to these topics. However most

authors approach them as problems for supervised learning and object segmentation from images

(Badrinarayanan et al., 2016) or LIDAR (Mei et al., 2018). Another line of work has achieved

remarkable results by using unsupervised features like roughness and angle of the detected surface

normal from LIDAR-scans (Liu et al., 2017; Zhang et al., 2018). While during training our approach

only relies on self-supervision from stereo imagery and does not use LIDAR or labeled segmentation

data these are the concepts that come closest to our framework. During inference however we

segment obstacles directly from monocular images using a convolutional neural network and do not

use LIDAR measurements.

3 Methods

The main objective of our setup is the self-supervised learning of depth estimation and the segmenta-

tion of possible obstacles. The sole source of supervision for both tasks during training are pairs of

stereo images with known intrinsic and extrinsic parameters. LIDAR and other ground truth data is

solely used for evaluation purposes. In the following we will describe in detail the problem setup, the

architectural details of our model as well as the objective functions and compare them to architectures

proposed by other authors.

3.1 Problem Setup

The input during training are two rectified stereo RGB images (I1, I2) ∈ RH×W×3 as well as the

extrinsic camera parameters (C1, C2) ∈ R4×4 for them. The model θ is a fully convolutional neural

network that takes a single image Ii as input and predicts a depthDi ∈ RH×W and a map of obstacles

Oi ∈ RH×W . Similar to Zhou et al. (2017) and Casser et al. (2018) through the depth estimated

by θ and a fully differentiable warping operation φ we can project the images I1 and I2 between

the camera viewpoints defined by C1 and C2 such that Îi→j denotes the j-th image constructed by

warping the i-th image into the j-th position. The training signal can either be computed through

photometric losses between the projected image Îi→j and the original image Ij (Figure 24) such as

the reconstruction loss Lrec = |Îi→j − Ij |, or through losses like our obstacle detection loss that are

derived from the estimated depth.
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3.2 Model Architecture

The basic model architecture we use can be seen in Figure 25 and is based on a U-Net architecture

(Ronneberger et al., 2015a) that consists of encoder-decoder structures with skip-connections, and

applies best practices introduced in previous works (Godard et al., 2018; Casser et al., 2018).

Figure 25: General Model Architecture

As an encoder ResNet18 is used (He

et al., 2016) and as a decoder we use

an improved variation of the one used

in (Godard et al., 2018). We use skip

connections augmented with additional

blocks consisting of two convolutional

layers that are then re-concatenated with

their input-tensor and output the esti-

mated depth at four scales through a

single convolutional layer with sigmoid

activation. Then we apply a rescaling

operation of the following form: D =

1/(a∗σ+b), where σ is the output from

the sigmoid activation and a and b are

chosen as 10 and 0.01 to constrain the

output range of D. In all other layers we use RELU nonlinearities, and reflective padding instead

of zero padding to reduce border artifacts. The obstacle segmentation branch consists of a padding

layer and two convolutional layers and branches out before the last convolutional layer of the depth

estimation network. In total the model has little over 14M parameters which allows for relatively

efficient training and execution.

3.3 Objective Functions

For the depth estimation branch we use a reconstruction loss and a structural similarity loss. The

reconstruction loss is computed as the sum of the absolute difference of the left and right images

warped onto each other using the estimated depth:

Lrec = |Î1→2 − I2|+ |Î2→1 − I1| (2)

In addition we use an SSIM loss proposed by Wang et al. (2004), however instead of computing

the structural similarity between the warped and the original image we compute the SSIM loss on

the atan2 transformation of both images (Figure 26). This ensures high contrast even in under- or

overexposed images and amplifies small details that are making it easier for the SSIM loss to punish

even small differences. For both losses the error is only computed on areas that are not occluded
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during the warping operation. As a third loss function for the depth estimation task we choose to use

the extended scale invariant log RMSE introduced by Mancini et al. (2018)

Ldepth =
1

n

∑
i

d2i −
1

2n2

(∑
i

di

)2
+

1

n

∑
i

(
∇xDi +∇yDi

)
·Nj (3)

Figure 26: Image and its atan2 transformation.

where di = logDi − logDj , Di and

Dj are the left and right predicted

depth warped onto each other. ∇xDi

and∇yDi are the horizontal and ver-

tical predicted depth gradients of Di

and Nj is the 3D surface normal of

the projected depth Dj . While the

first two terms correspond to the scale

invariant log RMSE loss introduced

in (Eigen et al., 2014), the third term

was originally introduced to enforce

the orthogonality between predicted

gradients and a given ground truth nor-

mal, aiming to preserve geometric coherence by Mancini et al. (2018). We use this loss to verify the

coherence between the left and right predicted depths.

In order to train the obstacle segmentation branch we generate a self-supervised obstacle map for

every pixel pk where ob(pk) = 0 indicates drivable area and ob(pk) = 1 indicates an obstacle. The

values are derived from the roughness of the estimated depth D(pk) and the angle of the surface

normal N(pk).

If we denote the 8 connected neighboring pixels of pk as S(pk), a pixel is marked as obstacle if one

of the following conditions is true:

max
p∈S(pk)

(|D(pk)− S(pk)|) > θ1 (D(pk))2 (4)

|D(pk)− D̄(pk)| > θ2 (D(pk))2 (5)

arcsin

(
|Ny(pk)|
‖N(pk)‖

)
< θ3 (6)
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Figure 27: (from top to bottom) 1) Original Image, 2) Estimated
Depth, 3) Computed Obstacle Map, 4) Product of Estimated Dis-
parity and Estimated Obstacle Map.

where θ1 and θ2 are hyperpa-

rameters set to 0.006 and 0.003,

whereas θ3 is the maximum de-

viation angle from the vertical

axis that we set to 82◦. D̄(pk)

is the mean of the depth of S(pk)

points. Ny(pk) is the projec-

tion of the norm N(pk) on the y-

axis. The intermediate obstacle

maps are then combined via log-

ical inclusive-or and we remove

all non-obstacle patches that are

smaller than 5% of the total im-

age area (Figure 27).

Finally the obstacle-loss is com-

puted using the cross-entropy be-

tween the resulting map and the

output of the obstacle-branch of

the network where the weights

for drivable and obstacle are 1.0

and 1.4. To keep obstacles con-

sistent between left and right im-

age and to remove small arti-

facts we also apply the SSIM loss

on both estimated obstacles and

their warped counterparts.

The final loss is computed as a weighted sum off all the losses, applied to both stereo images:

Ltotal = α Lrec + β Lssim + γ Ldepth + δ Lobst + ε Lobst_ssim (7)

where α, β, γ, δ and ε are hyperparameters that we decided to set to 0.85, 0.2, 0.001, 0.01 and

0.0035. While at first it might seem more efficient to simply compute the ground truth obstacle

map at inference time using the formulae listed above, we found that adding two additional layers

as an obstacle branch to our network is not only faster but also leads to generally better results for

obstacle detection with less noise and better left-right consistency, but also lower errors in the depth

estimation.
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3.4 Training

We train our model on the images from the KITTI Raw dataset and exclude all static scenes as well

as the test-split used by Eigen et al. (2014). While we resize the images to a resolution of 416×128

pixels, we test the results on the ground truth depth recreated at the original image resolution. We

do this by interpolating the estimated depths bi-linearly. Prior to training the encoder is pretrained

on Imagenet and during training we augment images through horizontal flipping and by randomly

varying the color space within the imagenet distribution. We use a batch-size of 4 and Adam (Kingma

and Ba, 2015) as an optimizer with β1 = 0.9, β2 = 0.999. As an initial learning rate we use 0.0002

and halve it after every 100,000 batches without improvement. Even though the architecture of the

model is relatively straightforward we have to apply a few tricks to allow it to train in a stable way.

Our network contains few batch normalization layers in the decoder, which we assume helps with

absolute scaling of the estimated depth outputs. This however makes it quite difficult to get the

training started without exploding gradients. To mitigate this problem we start the training with five

additional batch-normalization layers, located at the front of the decoder and between the decoder

blocks. Once the model has started training successfully and the metrics have gone below a specific

threshold we start removing the added normalization layers progressively starting from the end of

the decoder stack. While without this system the model can start rarely if ever, with it starting the

training is almost always successful. Also during the initial training we deactivate the obstacle branch

and only activate it once the depth-estimation branch has started to show decent results. We train

our Tensorflow implementation of the model for up to 50 epochs on a single GTX1080 which takes

around 50 hours and select the checkpoint with the lowest training loss for testing.

4 Experimental Evaluation

In the following section we present results from our models trained on the KITTI Raw dataset created

by Geiger et al. (2013) and evaluated on the test-split proposed by Eigen et al. (2014). While we use

a popular benchmark and common metrics in order to make the depth estimation results comparable,

we are not aware of a benchmark to compare the results of our obstacle detection approach. The

applied dataset contains around 42K rectified stereo images from 61 different scenes and the test split

consists of 697 stereo image pairs. The ground truths are produced by a Velodyne laser scanner with

a range of up to 80 meters and are reprojected onto the left image at the original image resolution,

that slightly varies around 1392 × 512 pixels. In general ground truth data is used for evaluation

only and we resize the estimations to the original resolution through bilinear interpolation. When

displaying our obstacle segmentation results we combine them with the disparity, which being the

inverse of the depth, helps to better display nearby details, while depth shows details equally over

the whole distance, which would be less suitable for obstacle detection. As shown in Table 1 we are

able to significantly improve the state of the art for self-supervised depth estimation and as shown

in Figure 28, models using the obstacle-segmentation branch are able to produce convincing and

reasonably detailed obstacle maps under varying circumstances. We test different variants of our

model for Joint Unsupervised Depth and Obstacle Estimation (JUDO), and while all models deliver
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comparably good results, we show that the addition of convolutional blocks in the skip connections

as well as the addition of the obstacle-detection branch lead to a slight refinement of the model, while

still running at over 60 frames per seconds during single-image inference on a single GTX1080.

Table 1: Evaluation and comparison of monocular depth estimation results on the KITTI dataset and
test-set used by Eigen et al. (2014). As supervision they use ground-truth (D), motion (M), or stereo
(S). All results use a maximum range of 80 meters. For pink columns lower is better while for yellow
columns higher values are better.

Method Sup Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Eigen et al. 2014 D 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. 2014 D 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Zhou et al. 2017 S 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Yang et al. 2017 S 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Godard et al. 2017 S 0.141 1.369 5.849 0.242 0.818 0.929 0.966
Godard et al. 2018 S 0.133 1.158 5.370 0.208 0.841 0.949 0.978
Yang et al. 2018b S 0.137 1.326 6.232 0.224 0.806 0.927 0.973
Yang et al. 2018b M 0.131 1.254 6.117 0.220 0.826 0.931 0.973
Casser et al. 2018 M 0.109 0.825 4.750 0.187 0.874 0.958 0.983
JUDOno skip blocks(ours) S 0.0951 0.8900 4.5232 0.1825 0.9130 0.9610 0.9785
JUDO(ours) S 0.0944 0.9005 4.5801 0.1818 0.9136 0.9613 0.9787
JUDOobstacle detection(ours) S 0.0935 0.8446 4.4363 0.1817 0.9146 0.9610 0.9784
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(a) (b)

(c) (d)

(e) (f)

Figure 28: (top to bottom) 1) Original Image, 2) Estimated Depth, 3) Obstacle Disparity Product
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5 Conclusion

We have presented a model for the self-supervised learning of depth-map prediction as well as

obstacle segmentation from monocular images using only aligned stereo images during training.

Applying current best practices as well as some novel loss variations and techniques we are able to

significantly improve the current state of the art in self-supervised depth estimation and show that

self-supervised obstacle segmentation can achieve promising results. This should be encouraging for

future research in these areas since supervised approaches in both areas require considerable technical

and financial resources and might under some conditions not be feasible at all. In the future more

rigorous testing of the obstacle detection results will be tackled such that its results can be judged

and explored more scientifically. Furthermore we would like to try approaches for better temporal

consistency of our results and for simultaneous localization and mapping with included obstacle

detection. Also the application of our system for semi-supervised learning of obstacle segmentation

could be a promising topic for future exploration.

6 Discussion

While the quantitative results are strong compared to current methods, it is not absolutely clear

how much the different components contribute to them. Detailed ablation studies would need to be

performed to judge the individual contributions of architecture, staged training procedure or losses.

Similarly the quality and utility of the obstacle detection results are currently left unvalidated and will

need to be investigated further to judge them fairly. This detailed quantitative evaluation could not be

performed within the limited amount of time and resources and will have to be done during future

experiments. Furthermore testing on different data sets and practical implementations will provide a

better understanding about how well these results can be generalized.
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