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Abstract

This paper proposes a new architecture for an efficient yet scalable Fully
Convolutional Neural Network (FCNN) that can be trained to estimate detailed
depth maps from single or stereo images, while being fast enough for mobile or
real-time applications. We apply recent architectural refinements such as atrous
spatial pyramid pooling, residual decoder modules and a novel loss function and
set a baseline for depth estimation on the ApolloScape real-world driving dataset
as part of the evaluation.

1 Introduction

Depth perception is the process of extracting 3D information out of planar representations of a scene
and has been a longstanding area of interest in computer vision. Traditional approaches include
disparity estimation from binocular or multi-view stereo and motion parallax as well as shape from
X [2]]. Humans typically use a combination of all of these methods and thus perform very well at
binocular and even monocular depth perception. With the advent of deep neural networks many kinds
of models have been trained to take advantage of these simple geometrical approaches as well as
learning more complex knowledge about light, object shapes, textures and the structure of a scene.
This has led to a number of monocular, binocular or multi-view-stereo approaches with very promising
results. Although there are some exceptionally interesting approaches to treat depth estimation as
an unsupervised learning process, mostly by synthesizing it as an intermediate during stereo or
motion parallax image reconstruction [10] [21]], the state of the art is still training on large sets of
scenes with ground truth depth obtained via LIDAR or from simulated environments. There are many
use cases for accurate depth estimation from single or stereo images including augmented reality
applications, simultaneous localization and mapping, scene understanding, image segmentation,
object pose estimation, 3D-conversion of 2D imagery or for automated driving assistance and self-
driving cars. Our approach uses a novel loss function as well as a number of recent advances and
architectural refinements in convolutional neural networks to achieve state of the art results for a
network of its size in both monocular and binocular depth estimation, using end-to-end training.
Specifically, we propose the following:

1. A network architecture that performs well on both monocular and binocular depth estimation
and can easily be scaled up or down according to performance and accuracy needs as well
as computational budget.

2. An improved and efficient decoder design, based on transpose convolutions and depthwise
separable convolutions and extended residual blocks, that allows us to reproduce a much
higher level of detail with respect to previous models.

Preprint. Work in progress.



3. An advanced objective function that enforces orthogonality between predicted gradients and
ground truth normals, as well as offering a parameter to balance the sharpness of edges and
smoothness of surfaces.

2 Related Work

Convolutional Neural Networks were first used for depth estimation by Eigen et al. [8] and have
subsequently significantly improved the state of the art in non-parametric monocular and binocular
depth estimation. In the following we will discuss some important advances and related works in the
area.

2.1 Encoder-Decoder Model

These models consist of two parts, where 1) the encoder gradually reduces the spatial dimension
of the feature maps and encodes longer range information into a deeper output, which 2) gets then
reexpanded in the spatial dimension by the decoder whereby object details are gradually recovered.
An approach that has shown to greatly improve object-boundary reconstruction are skip-connections
introduced in U-Net [[18]. Hereby encoder features are directly connected to the corresponding
decoder activation allowing the network to pass on fine-grained information about boundaries.

2.2 Atrous Spatial Pyramid Pooling

In order to capture both local and global details on multiple scales there have been attempts at using a
multi resolution approach where the same image is typically fed into an encoder with shared weights
at multiple resolutions, thus enhancing the receptive field of the networks [14]. To obtain a similarly
scalable receptive field at a much lower computational cost Atrous Spatial Pyramid Pooling (ASPP)
has been introduced [3]]. Hereby atrous convolution layers with different rates are applied in parallel
to collect data at multiple scales. Modifying the rate of atrous or dilated convolution has been shown
to affect the capturing of long range information [20], resulting in promising performance in the area
of semantic segmentation [3} 20], but also for monocular depth estimation [9].

2.3 Residual Networks

As simple neural networks get deeper they start getting harder x

to train due to vanishing gradients, greatly degrading training
accuracies with our current solvers. To deal with this problem

He et al. [[11] introduced a network architecture using residual Fix)
building blocks, resulting in a much easier optimization of very
deep networks while still retaining lower complexity than many
previous nets and subsequently improved image recognition
accuracies by a large margin. It has since been hypothesized
that the optimization of the residual mapping is easier than
optimizing the original unreferenced mapping [[11]].

X
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2.4 MobileNetv2 Figure 1: Residual block

MobileNetv2 [[19] has been introduced as a significant improve-

ment from MobileNet [12]] and applies a very efficient combination of depthwise separable convolu-
tion, inverted residuals and linear bottlenecks, achieving an excellent balance between performance
and accuracy while maintaining a remarkably simple architecture. It has been used as a feature
extractor for semantic segmentation in DeepLabv3 [4]], beating YOLOv2 [17] on the COCO-dataset
[L5] while being 20x more efficient and 10x smaller[4].

2.5 Modified Aligned Xception

The Xception Model [6] has shown promising results in image classification and has since been
refined [5, [7] with deeper Xception, replacing all max-pooling operations with a set of depthwise-
separable convolutions, batch normalization and ReLU activation. Being used as an encoder in



DeepLabv3+ it has been shown to significantly improve segmentation accuracy along object borders

(3]

3 Methods

In this section we briefly review atrous convo-
lution in the context of Atrous Spatial Pyramid
Pooling[4]. We then discuss XceptionV2 [5]]

and MobileNetv2 [[19] as part of the Encoder-
Decoder Models introduced in DeepLab3 [4]

and DeepLab3+ [3] and their implementation
as backbone in our proposed architecture, fol-
lowed by the introduction of extended residual
blocks and their application as well as a novel
loss function for depth estimation employed by
our model.

3.1 Atrous Spatial Pyramid Pooling

Atrous convolution is a powerful method by
which the field of view of a particular filter can
be adjusted in order to capture multi-scale in-
formation, resulting in much better generaliza-
tion with regards to standard convolution [5].
The atrous rate r determines the stride with
which the input is sampled, such that for a two-
dimensional signal each location ¢ of the output
feature map y and a convolution filter w is com-
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puted from the input feature map as follows:

yli = ali+r - kuwlk] (1)

k

Thus the standard convolution operation is just an atrous
convolution where the rate » = 1. In our implementation
we use an Atrous Pyramid Pooling architecture introduced
by Chen et al. [5] as part of the encoder (shown in Figures
and ) where atrous convolution is applied at multiple
scales and concatenated with a depthwise separable con-
volution and a pooling layer. To reduce the number of
filters and thus save on computation we feed the concate-
nated outputs into a depthwise separable convolution layer
whose output is then passed on to the CND-Decoder.

3.2 Encoder Architecture

Since depth estimation is mostly interesting for applica-
tions that are also time-sensitive or even performed in real
time, our goal for the proposed CND-Architecture was
to aim for state of the art accuracy, while also being as

Figure 2: DeepLabv3+
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Figure 3: Atrous Spatial Pyramid Pool-
ing

efficient as possible. Therefore we chose MobileNetv2 [19] with its high accuracy, yet low number
of operations as our encoder backbone. We feed the model with 256x160 images that we do not
preprocess apart from rescaling and horizontal flipping during training. While MobileNetv?2 offers
parameters to scale its size and performance to the users needs, we keep them at their default values.
For the stereo models we share the weights between left and right encoder branch to save on memory
which allows us to train all of our model on a single Nvidia GTX1080 at a batchsize of 16. After the
MobileNetv?2 stack reduces the filter size to 16 times smaller than the original size of the image at a
depth of 256, we apply the ASPP block to extract the encoded features at multiple resolutions. In
detail it consists of three 3x3 atrous convolution layers with dilation rates of 6, 12 and 18, that are




put in parallel to a depthwise separable convolution and a max-pooling layer. All of them are then
batch-normalized and concatenated before we apply a depthwise separable convolution to reduce the
filter depth to 256. This output is then concatenated with a layer that has skipped the ASPP block and
has been fed through a depthwise separable convolution to the stack and is then again reduced to a
filtersize of 256 through a depthwise separable convolution, before being passed on to the decoder.

3.3 Decoder Architecture
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Figure 4: General CNDstereo architecture (left), Residual Decoder Module (right)

While other publications [3} 15} [16] use decoders apply-
ing basic stacks of Upsampling-Layers with factor 16, 4
or 2, we explore a more complex approach where every
one of the four 2x upsampling operations is followed by
a 3x3 transpose convolution layer with the same spatial
resolution, a batch-normalization and a ReLLU-activation
layer. This approach has been applied in XceptionV2[5]]
in an attempt to eliminate all pooling operations. Pooling
is typically used to achieve spatial invariance, which is
undesirable in cases like segmentation or depth perception,
where spatial awareness is essential. In our most basic
encoder-architecture called CNDmicro, which is intended
for low latency or mobile applications, this block is re-
peated four times, gradually reducing the filter depth to
16, and concluded with a final 2x upsampling and a con-
secutive 7x7 convolution layer with stride 2 that outputs
the final 256x160 depth map. Additionaly, in order to
refine detail around object borders we concatenate a skip-
connection after the second reduction block of the encoder,
and concatenate it with the corresponding decoder layer
of the same size after feeding it through a depthwise sep-
arable convolution. For the purpose of further improving
the quality of the results we introduce an extended resid-
ual block architecture (Figure E[), based on the successful
residual block by He et al. [11]. In our implementation

|:| ASPP output
|:| Skip connection

|:| 2x Deconvolution

I:l extended residual block
|:| 2x Convolution

|:| Decoder output
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Figure 5: CND-Decoder Architecture




we create a residual connection, that internally consists of m blocks who in turn contains n weight
layer blocks. These are formed by a transpose convolutional layer followed by a batch normalization
and a ReLU layer. For the final implementation of CNDmono and CNDstereo we used two of these
extended residual blocks with m = n = 2 between the upsampling blocks.

3.4 Extended Depth Loss

After experimenting with a selection of successful loss-functions that have been used in the context
of depth estimation, we chose to expand on the extended scale invariant log RMSE introduced by
Mancini et al. [[16]:

Ldepth:%de QnQ(Zd) +1ZVD+V DN @)

where d; = log D; — log D}, D; and D; are

the predicted depth and the ground truth depth
at pixel ¢ respectively. V,D; and V, D; are the
horizontal and vertical predicted depth gradients

and N is the ground truth 3D surface normal. \\ f //

While the first two terms correspond to the scale RN s .
invariant log RMSE loss introduced in [8]], the \Q\ N / 7 —(xl+-1
third term was introduced to enforce the orthog- T | _,,'.;;'L-” —(Ix]+17-1
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truth normals, aiming to preserve geometric co-
herence by Mancini et al. [[16]. We propose to
augment this loss in the following way, aiming
to improve the detailed reconstruction of sharp
edges and foreground objects.

Figure 6: Extended loss behavior assuming differ-
ent values for ¢

Lezt = (|Ldepth| + 1)(/) -1 (3)

Hereby we introduce the parameter ¢ that can be tuned to achieve the desired balance between sharp
edges and smooth surfaces. We achieved notable improvements by setting ¢ = 2 without extensive
optimization. The behavior of L., assuming different values for ¢ can be seen in Figure 6]

4 Experimental Evaluation

In the following section we present results obtained by several versions of our proposed architecture.
All results have been obtained through end-to-end training without pretraining or postprocessing.
Training and testing of our TensorFlow-based[ 1] implementation has been performed on a single
Nvidia GTX1080 for models with a batchsize of 16, and on a cluster of 8 GTX1080s for models
with a batch size of 128. We also present results on a 24k image subset of the recent ApolloScape
dataset[[13]]. We report the following error measures that have been extensively used. Denote y as
true depth, § as predicted depth and 7" as the set of all points in the image.
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Table 2: Prediction times for the proposed models.

Name Description # of params  Prediction time

CNDmicro mono, no residual blocks 5.8M 13.8ms £ 258us
CNDmono mono, 2x2 residual blocks  6.7M 15.3ms £ 435us
CNDstereo  stereo, 2x2 residual blocks 11.1M 27.5ms + 318us

Table 1: Model results for a 24k image subset of the ApolloScape Dataset[13]]

Name Description Batch Size rel logy RMSE
CNDmicro mono, no residual blocks 16 0.15989 0.04315 0.02247
CNDmono mono, 2x2 residual blocks 16 0.15509 0.04112 0.02147
CNDstereo  stereo, 2x2 residual blocks 16 0.14820 0.04105 0.02024
CNDstereo  stereo, 2x2 residual blocks 128 0.14297 0.03899 0.01948

Results on other common datasets like KITTI will be published soon. To date, to the best of our
knowledge, no depth estimation results have been published on the recent ApolloScape dataset, thus
our results can be regarded as a first baseline. We would like to note however the CNDmicro model
achieves notable results despite its very low number of parameters and low execution time. CNDmono
substantially improves on the CNDmicro accuracy through the newly introduced extended residual
blocks without big changes in performance or parameter count. CNDstereo justifies its increase
in execution time through a further substantial increase in accuracy, that can be further improved

by training it with greater batch sizes. In the following some example results for CNDmicro and
CNDstereo will be shown:
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Figure 7: CNDmono depth map estimation results
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Figure 8: CNDstereo depth map estimation results

5 Conclusion

In this work we propose an efficient and scalable architecture for monocular and binocular depth
estimation. It aims to refine detail reproduction around object borders using atrous convolutions, skip
connections and a new residual decoder module. We employ an advanced loss function to further
improve our results and achieve remarkably detailed and visually accurate results. Further work
will be put into achieving results for the most important benchmarks in depth estimation as well as
hyperparameter exploration on our current architecture followed by exploring more computationally
challenging encoder-backbones such as XceptionV2.
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